梁兴杰-中国科学院大学-UCAS


本站和网页 http://people.ucas.ac.cn/~0002450 的作者无关,不对其内容负责。快照谨为网络故障时之索引,不代表被搜索网站的即时页面。

梁兴杰-中国科学院大学-UCAS
[中文]
[English]
教育背景
出版信息
指导学生
基本信息
梁兴杰 男 博导 国家纳米科学中心 电子邮件:liangxj@nanoctr.cn 通信地址:北京市海淀区中关村北一条11号 邮政编码:100190
招生信息
招生专业
070304-物理化学(含:化学物理)0703J1-纳米科学与技术
招生方向
纳米医学,纳米生物技术,纳米成像 纳米医学,纳米生物技术,纳米成像
教育背景
学历
-- 研究生
学位
-- 博士
出版信息
发表论文
[1] Irina M Zurina, Victoria S Presniakova, Denis V Butnaru, Peter S Timashev, Yury A Rochev, XingJie Liang. Towards clinical translation of the cell sheet engineering: Technological aspects. Smart Materials in Medicine. 2023, 4: 146-159, http://dx.doi.org/10.1016/j.smaim.2022.09.002.[2] Wang, YiFeng, Zhang, Qingrong, Tian, Falin, Wang, Hongda, Wang, Yufei, Ma, Xiaowei, Huang, Qianqian, Cai, Mingjun, Ji, Yinglu, Wu, Xiaochun, Gan, Yaling, Yan, Yan, Dawson, Kenneth A, Guo, Shutao, Zhang, Jinchao, Shi, Xinghua, Shan, Yuping, Liang, XingJie. Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS NANO[J]. 2022, 16(3):&nbsp4059-4071, http://dx.doi.org/10.1021/acsnano.1c09684.[3] Wu, Long, Xie, Wei, Li, Yang, Ni, Qiankun, Timashev, Peter, Lyu, Meng, Xia, Ligang, Zhang, Yuan, Liu, Lingrong, Yuan, Yufeng, Liang, XingJie, Zhang, Qiqing. Biomimetic Nanocarriers Guide Extracellular ATP Homeostasis to Remodel Energy Metabolism for Activating Innate and Adaptive Immunity System. ADVANCED SCIENCE[J]. 2022, 9(17):&nbsphttp://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000779571900001.[4] 梁兴杰. Fibrin Site-Specific Nanoprobe for Imaging Fibrin-Rich Thrombi and Preventing Thrombus Formation in Venous Vessel. Advanced Materials[J]. 2022, [5] Shan, Shaobo, Chen, Junge, Sun, Yu, Wang, Yongchao, Xia, Bozhang, Tan, Hong, Pan, Changcun, Gu, Guocan, Zhong, Jie, Qing, Guangchao, Zhang, Yuxuan, Wang, Jinjin, Wang, Yufei, Wang, Yi, Zuo, Pengcheng, Xu, Cheng, Li, Fangzhou, Guo, Weisheng, Xu, Lijun, Chen, Meiwan, Fan, Yubo, Zhang, Liwei, Liang, XingJie. Functionalized Macrophage Exosomes with Panobinostat and PPM1D-siRNA for Diffuse Intrinsic Pontine Gliomas Therapy. ADVANCED SCIENCE[J]. 2022, 9(21):&nbsphttp://dx.doi.org/10.1002/advs.202200353.[6] Wang, Yufei, Wang, YiFeng, Li, Xianlei, Wang, Yuqing, Huang, Qianqian, Ma, Xiaowei, Liang, XingJie. Nanoparticle-Driven Controllable Mitochondrial Regulation through Lysosome-Mitochondria Interactome. ACS NANO. 2022, [7] Tian Zhang, Shuai Guo, Fangzhou Li, Xinmiao Lan, Yaru Jia, Jinchao Zhang, Yuanyu Huang, XingJie Liang. Imaging-guided/improved diseases management for immune-strategies and beyond. Advanced Drug Delivery Reviews. 2022, 188: http://dx.doi.org/10.1016/j.addr.2022.114446.[8] Lu, Mei, Xing, Haonan, Shao, Wanxuan, Zhang, Tian, Zhang, Mengjie, Wang, Yongchao, Li, Fangzhou, Weng, Yuhua, Zheng, Aiping, Huang, Yuanyu, Liang, XingJie. A Photoactivatable Silencing Extracellular Vesicle (PASEV) that Sensitizes Cancer Immunotherapy. ADVANCED MATERIALS. 2022, [9] Zhang, Wei, Du, XiangFu, Liu, Ben, Li, Cairong, Long, Jing, Zhao, MeiXia, Yao, Zhenyu, Liang, XingJie, Lai, Yuxiao. Engineering Supramolecular Nanomedicine for Targeted Near Infrared-triggered Mitochondrial Dysfunction to Potentiate Cisplatin for Efficient Chemophototherapy. ACS NANO[J]. 2022, 16(1):&nbsp1421-1435, [10] 梁兴杰. Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. RESEARCH[J]. 2022, 9808429-9808429, [11] 梁兴杰. Stromal Homeostasis-Restoring Nanomedicine Enhances Pancreatic Cancer Chemotherapy. nano letters[J]. 2022, 22: 8744-8754, [12] Ni, Qiankun, Xu, Fengfei, Wang, Yufei, Li, Yujie, Qing, Guangchao, Zhang, Yuxuan, Zhong, Jie, Li, Jinghong, Liang, XingJie. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. JOURNAL OF CONTROLLED RELEASE[J]. 2022, 342: 210-227, [13] Ruslan G Tuguntaev, Chukwunweike Ikechukwu Okeke, Jing Xu, Chan Li, Paul C Wang, XingJie Liang. Nanoscale Polymersomes as Anti-Cancer Drug Carriers Applied for Pharmaceutical Delivery. Current pharmaceutical design. 2022, 22(19):&nbsp2857-2865, [14] Yang, Ren, Deng, Yao, Huang, Baoying, Huang, Lei, Lin, Ang, Li, Yuhua, Wang, Wenling, Liu, Jingjing, Lu, Shuaiyao, Zhan, Zhenzhen, Wang, Yufei, Ruhan, A, Wang, Wen, Niu, Peihua, Zhao, Li, Li, Shiqiang, Ma, Xiaopin, Zhang, Luyao, Zhang, Yujian, Yao, Weiguo, Liang, Xingjie, Zhao, Jincun, Liu, Zhongmin, Peng, Xiaozhong, Li, Hangwen, Tan, Wenjie. A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. SIGNAL TRANSDUCTION AND TARGETED THERAPY[J]. 2021, 6(1):&nbsphttp://dx.doi.org/10.1038/s41392-021-00634-z.[15] Wu, Xiaoli, Yang, Han, Chen, Xingmeng, Gao, Junxiao, Duan, Yue, Wei, Daohe, Zhang, Jinchao, Ge, Kun, Liang, XingJie, Huang, Yuanyu, Feng, Sizhou, Zhang, Rongli, Chen, Xi, Chang, Jin. Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. BIOMATERIALS[J]. 2021, 269: http://dx.doi.org/10.1016/j.biomaterials.2021.120654.[16] Wang, Yuqing, Xia, Bozhang, Huang, Qianqian, Luo, Ting, Zhang, Yuanyuan, Timashev, Peter, Guo, Weisheng, Li, Fangzhou, Liang, XingJie. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. ADVANCED HEALTHCARE MATERIALSnull. 2021, 10(24):&nbsphttp://dx.doi.org/10.1002/adhm.202100945.[17] Zhou, Qunfang, Gong, Ningqiang, Zhang, Dongyun, Li, Jing, Han, Xue, Dou, Jianping, Huang, Jinhua, Zhu, Kangshun, Liang, Ping, Liang, XingJie, Yu, Jie. Mannose-Derived Carbon Dots Amplify Microwave Ablation-Induced Antitumor Immune Responses by Capturing and Transferring "Danger Signals" to Dendritic Cells. ACS NANO[J]. 2021, 15(2):&nbsp2920-2932, http://dx.doi.org/10.1021/acsnano.0c09120.[18] Guo, Amin, Zhang, Jianhua, Wang, Yufei, Fan, Jiadong, He, Bo, Wang, Jian, Tai, Renzhong, Liang, XingJie, Jiang, Huaidong. Nanoscale Detection of Subcellular Nanoparticles by X-Ray Diffraction Imaging for Precise Quantitative Analysis of Whole Cancer Cells. ANALYTICAL CHEMISTRY[J]. 2021, 93(12):&nbsp5201-5210, http://dx.doi.org/10.1021/acs.analchem.0c05282.[19] Cheng, HongBo, Zhang, Shuchun, Qi, Ji, Liang, XingJie, Yoon, Juyoung. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALSnull. 2021, 33(26):&nbsphttp://dx.doi.org/10.1002/adma.202007290.[20] Xingjie Liang. Exploiting the Acquired Vulnerability of Cisplatin-Resistant Tumor with a Hypoxia-Amplifying DNA Repair-Inhibiting (HYDRI) Nanomedicine. Science Advances. 2021, [21] Wang, YiFeng, Zhang, Chunqiu, Yang, Keni, Wang, Yufei, Shan, Shaobo, Yan, Yan, Dawson, Kenneth A, Wang, Chen, Liang, XingJie. Transportation of AIE-visualized nanoliposomes is dominated by the protein corona. NATIONAL SCIENCE REVIEW[J]. 2021, 8(6):&nbsp17-27, http://dx.doi.org/10.1093/nsr/nwab068.[22] Yang, Yuanyuan, Liu, Xin, Ma, Wen, Xu, Qing, Chen, Gui, Wang, Yufei, Xiao, Haihua, Li, Nan, Liang, XingJie, Yu, Meng, Yu, Zhiqiang. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. BIOMATERIALS[J]. 2021, 265: http://dx.doi.org/10.1016/j.biomaterials.2020.120456.[23] Xingjie Liang. An amphiphilic dendrimer as a light-activable immunological adjuvant (LIA) for improved in situ cancer vaccination. Nature Communications. 2021, [24] Liu, Tao, Zou, Hui, Mu, Jingqing, Yu, Na, Xu, Yang, Liu, Guohua, Liang, Xingjie, Guo, Shutao. Acid-sensitive PEGylated cabazitaxel prodrugs for antitumor therapy. CHINESE CHEMICAL LETTERS[J]. 2021, 32(5):&nbsp1751-1754, http://dx.doi.org/10.1016/j.cclet.2020.12.008.[25] Wang, Jinjin, Ni, Qiankun, Wang, Yufei, Zhang, Yuxuan, He, Hongyu, Gao, Dawei, Ma, Xiaowei, Liang, XingJie. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. JOURNAL OF CONTROLLED RELEASE[J]. 2021, 331: 282-295, http://dx.doi.org/10.1016/j.jconrel.2020.08.045.[26] Qin, Jingbo, Gong, Ningqiang, Liao, Zhihuan, Zhang, Shouwen, Timashev, Peter, Huo, Shuaidong, Liang, XingJie. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. NANOSCALEnull. 2021, 13(15):&nbsp7108-7118, http://dx.doi.org/10.1039/d1nr01068a.[27] Wang, Yongchao, Wang, Jinjin, Zhu, Dandan, Wang, Yufei, Qing, Guangchao, Zhang, Yuxuan, Liu, Xiaoxuan, Liang, XingJie. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. ACTA PHARMACEUTICA SINICA B[J]. 2021, 11(4):&nbsp886-902, http://dx.doi.org/10.1016/j.apsb.2021.03.007.[28] Yang, Lijun, Zhang, Congrou, Liu, Jinjian, Huang, Fan, Zhang, Yumin, Liang, XingJie, Liu, Jianfeng. ICG-Conjugated and I-125-Labeled Polymeric Micelles with High Biosafety for Multimodality Imaging-Guided Photothermal Therapy of Tumors. ADVANCED HEALTHCARE MATERIALS[J]. 2020, 9(5):&nbsp[29] Xu, Yang, Mu, Jingqing, Xu, Zunkai, Zhong, Haiping, Chen, Ziqi, Ni, Qankun, Liang, XingJie, Guo, Shutao. Modular Acid-Activatable Acetone-Based Ketal-Linked Nanomedicine by Dexamethasone Prodrugs for Enhanced Anti-Rheumatoid Arthritis with Low Side Effects. NANO LETTERS[J]. 2020, 20(4):&nbsp2558-2568, https://www.webofscience.com/wos/woscc/full-record/WOS:000526413400043.[30] Zhang, Jimei, Zhao, Baochang, Chen, Shizhu, Wang, Yongchao, Zhang, Yuxuan, Wang, Yufei, Wei, Dengshuai, Zhang, Lingpu, Rong, Guanghua, Weng, Yuhua, Hao, Jifu, Li, Binglong, Hou, XueQin, Kang, Xiaoxu, Zhao, Yao, Wang, Fuyi, Zhao, Yongxiang, Yu, Yingjie, Wu, QinPei, Liang, XingJie, Xiao, Haihua. Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS NANO[J]. 2020, 14(11):&nbsp14831-14845, https://www.webofscience.com/wos/woscc/full-record/WOS:000595533800034.[31] Zhang, Wei, Li, Yi, Xu, Lanju, Wang, Dou, Long, Jing, Zhang, Meng, Wang, Yufei, Lai, Yuxiao, Liang, XingJie. Near-Infrared-Absorbing Conjugated Polymer Nanoparticles Loaded with Doxorubicin for Combinatorial Photothermal-Chemotherapy of Cancer. ACS APPLIED POLYMER MATERIALSnull. 2020, 2(10):&nbsp4180-4187, https://www.webofscience.com/wos/woscc/full-record/WOS:000580584900004.[32] Xue, Xue, Liang, XingJie. Special Issue: Nanomedicine: Therapeutic Applications. ADVANCED THERAPEUTICSnull. 2020, 3(5):&nbsphttp://dx.doi.org/10.1002/adtp.202000046.[33] Liu, Xiaoli, Zhang, Yifan, Wang, Yanyun, Zhu, Wenjing, Li, Galong, Ma, Xiaowei, Zhang, Yihan, Chen, Shizhu, Tiwari, Shivani, Shi, Kejian, Zhang, Shouwen, Fan, Hai Ming, Zhao, Yong Xiang, Liang, XingJie. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. THERANOSTICSnull. 2020, 10(8):&nbsp3793-3815, https://www.webofscience.com/wos/woscc/full-record/WOS:000518768400028.[34] Gong, Ningqiang, Zhang, Yuxuan, Teng, Xucong, Wang, Yongchao, Huo, Shuaidong, Qing, Guangchao, Ni, Qiankun, Li, Xianlei, Wang, Jinjin, Ye, Xiaoxia, Zhang, Tingbin, Chen, Shizhu, Wang, Yongji, Yu, Jie, Wang, Paul C, Gan, Yaling, Zhang, Jinchao, Mitchell, Michael J, Li, Jinghong, Liang, XingJie. Proton-driven transformable nanovaccine for cancer immunotherapy. NATURE NANOTECHNOLOGY[J]. 2020, 15(12):&nbsp1053-U111, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719078/.[35] Huang, Qianqian, Zhang, Jinchao, Zhang, Yuanyuan, Timashev, Peter, Ma, Xiaowei, Liang, XingJie. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. THERANOSTICSnull. 2020, 10(13):&nbsp5649-5670, https://www.webofscience.com/wos/woscc/full-record/WOS:000530611900001.[36] Yu, Na, Liu, Tao, Zhang, Xi, Gong, Ningqiang, Ji, Tianjiao, Chen, Jing, Liang, XingJie, Kohane, Daniel S, Guo, Shutao. Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. NANO LETTERS[J]. 2020, 20(7):&nbsp5465-5472, https://www.webofscience.com/wos/woscc/full-record/WOS:000548893200101.[37] Zujian Feng, Qinghua Li, Weiwei Wang, Qiankun Ni, Yufei Wang, Huijuan Song, Chuangnian Zhang, Deling Kong, XingJie Liang, Pingsheng Huang. Superhydrophilic fluorinated polymer and nanogel for high-performance 19F magnetic resonance imaging. Biomaterials. 2020, 256: http://dx.doi.org/10.1016/j.biomaterials.2020.120184.[38] Feng, Zujian, Li, Qinghua, Wang, Weiwei, Ni, Qiankun, Wang, Yufei, Song, Huijuan, Zhang, Chuangnian, Kong, Deling, Liang, XingJie, Huang, Pingsheng. Superhydrophilic fluorinated polymer and nanogel for high-performance F-19 magnetic resonance imaging. BIOMATERIALS[J]. 2020, 256: https://www.webofscience.com/wos/woscc/full-record/WOS:000564320100006.[39] Qiao, Bin, Luo, Yuanli, Cheng, HongBo, Ren, Jianli, Cao, Jin, Yang, Chao, Liang, Bing, Yang, Anyu, Yuan, Xun, Li, Jinrui, Deng, Liming, Li, Pan, Ran, HaiTao, Hao, Lan, Zhou, Zhiyi, Li, Maoping, Zhang, Yuanyuan, Timashev, Peter S, Liang, XingJie, Wang, Zhigang. Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS NANO[J]. 2020, 14(10):&nbsp12652-12667, http://dx.doi.org/10.1021/acsnano.0c00771.[40] Liu, Xiaoli, Yan, Bin, Li, Yao, Ma, Xiaowei, Jiao, Wangbo, Shi, Kejian, Zhang, Tingbin, Chen, Shizhu, He, Yuan, Liang, XingJie, Fan, Haiming. Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Rebated immune Response for Enhanced Antitumor Efficacy. ACS NANO[J]. 2020, 14(2):&nbsp1936-1950, http://dx.doi.org/10.1021/acsnano.9b08320.[41] Yu, Chanchan, Xu, Lanju, Zhang, Yuanyuan, Timashev, Peter S, Huang, Yuanyu, Liang, XingJie. Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. ACS APPLIED POLYMER MATERIALSnull. 2020, 2(10):&nbsp4289-4305, https://www.webofscience.com/wos/woscc/full-record/WOS:000580584900011.[42] Liang, XingJie. Precise nano-programmed ferroptosis with enhanced tumor chemotherapy. SCIENCE CHINA-MATERIALS. 2020, 63(10):&nbsp2086-2088, http://lib.cqvip.com/Qikan/Article/Detail?id=7103053999.[43] 王宇斐, 马嘉虹, 梁兴杰. 纳米药物国际研究态势分析. 中国科学:生命科学[J]. 2020, 50(7):&nbsp698-714, http://lib.cqvip.com/Qikan/Article/Detail?id=7102564514.[44] Zeng, Xiaolong, Wang, Yufei, Han, Jianxiong, Sun, Wen, Butt, HansJuergen, Liang, XingJie, Wu, Si. Fighting against Drug-Resistant Tumors using a Dual-Responsive Pt(IV)/Ru(II) Bimetallic Polymer. ADVANCED MATERIALS[J]. 2020, 32(43):&nbsphttp://dx.doi.org/10.1002/adma.202004766.[45] Chan Li, Jing Xu, Yaling Gan, XingJie Liang. Innovative Irinotecan-Loaded Nanomicelles Will Enter Phase I Clinical Trial in 2021. 创新(英文)[J]. 2020, 1(3):&nbsp100057-, http://lib.cqvip.com/Qikan/Article/Detail?id=7104969342.[46] Liu, XiaoLi, Chen, Shizhu, Zhang, Huan, Zhou, Jin, Fan, HaiMing, Liang, XingJie. Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges. ADVANCED MATERIALS[J]. 2019, 31(45):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000496187400034.[47] Du, Yang, Liu, Xiaoli, Liang, Qian, Liang, XingJie, Tian, Jie. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. NANO LETTERS[J]. 2019, 19(6):&nbsp3618-3626, http://dx.doi.org/10.1021/acs.nanolett.9b00630.[48] Gong, Ningqiang, Ma, Xiaowei, Ye, Xiaoxia, Zhou, Qunfang, Chen, Xiaoai, Tan, Xiaoli, Yao, Shengkun, Huo, Shuaidong, Zhang, Tingbin, Chen, Shizhu, Teng, Xucong, Hu, Xixue, Yu, Jie, Gan, Yaling, Jiang, Huaidong, Li, Jinghong, Liang, XingJie. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. NATURE NANOTECHNOLOGY[J]. 2019, 14(4):&nbsp379-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000463195700020.[49] Ma, Xiaowei, Wang, Yanyun, Liu, XiaoLi, Ma, Huijun, Li, Galong, Li, Yao, Gao, Fei, Peng, Mingli, Fan, Hai Ming, Liang, XingJie. Fe3O4-Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. NANOSCALE HORIZONS[J]. 2019, 4(6):&nbsp1450-1459, https://www.webofscience.com/wos/woscc/full-record/WOS:000491348700020.[50] Xingjie Liang. Evaluation of Turning-Sized Gold Nanoparticle (TSGN) on Cellular Adhesion by Golgi disruption in vitro and in vivo. Nano Letter. 2019, [51] Guangchao Qing, Ningqiang Gong, Xiaohui Chen, Jing Chen, Hong Zhang, Yongchao Wang, Ruifang Wang, Shouwen Zhang, Zhen Zhang, Xianxian Zhao, Yang Luo, XingJie Liang. Natural and engineered bacterial outer membrane vesicles. 生物物理学报:英文版[J]. 2019, 5(4):&nbsp184-198, http://lib.cqvip.com/Qikan/Article/Detail?id=7100259983.[52] Liu, Lu, Hu, Fanlei, Wang, Hui, Wu, Xiaoli, Eltahan, Ahmed Shaker, Stanford, Stephanie, Bottini, Nunzio, Xiao, Haihua, Bottini, Massimo, Guo, Weisheng, Liang, XingJie. Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS NANO[J]. 2019, 13(5):&nbsp5036-5048, [53] Seyed Mohammad Motevalli, Ahmed Shaker Eltahan, Lu Liu, Andrea Magrini, Nicola Rosato, Weisheng Guo, Massimo Bottini, XingJie Liang. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. 生物物理学报:英文版[J]. 2019, 5(1):&nbsp19-30, http://lib.cqvip.com/Qikan/Article/Detail?id=7001777563.[54] Ni, Kaiyuan, Aung, Theint, Li, Shuyi, Fatuzzo, Nina, Liang, Xingjie, Lin, Wenbin. Nanoscale Metal-Organic Framework Mediates Radical Therapy to Enhance Cancer Immunotherapy. CHEM[J]. 2019, 5(7):&nbsp1892-1913, http://dx.doi.org/10.1016/j.chempr.2019.05.013.[55] Gong, Ningqiang, Teng, Xucong, Li, Jinghong, Liang, XingJie. Antisense Oligonucleotide-Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(1):&nbsp37-42, [56] Wang, Yufei, Zhang, Yuxuan, Wang, Jinjin, Liang, XingJie. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. ADVANCED DRUG DELIVERY REVIEWSnull. 2019, 143: 161-176, http://dx.doi.org/10.1016/j.addr.2018.12.004.[57] Liu, Xiaoli, Zheng, Jianjun, Sun, Wei, Zhao, Xiao, Li, Yao, Gong, Ningqiang, Wang, Yanyun, Ma, Xiaowei, Zhang, Tingbin, Zhao, LingYun, Hou, Yayi, Wu, Zhibing, Du, Yang, Fan, Haiming, Tian, Jie, Liang, XingJie. Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. ACS NANO[J]. 2019, 13(8):&nbsp8811-8825, http://dx.doi.org/10.1021/acsnano.9b01979.[58] Li, Xianlei, Bottini, Massimo, Zhang, Luyao, Zhang, Shuai, Chen, Jing, Zhang, Tingbin, Liu, Lu, Rosato, Nicola, Ma, Xibo, Shi, Xinghua, Wu, Yan, Guo, Weisheng, Liang, XingJie. Core-Satellite Nanomedicines for in Vivo Real-Time Monitoring of Enzyme-Activatable Drug Release by Fluorescence and Photoacoustic Dual-Modal Imaging. ACS NANO[J]. 2019, 13(1):&nbsp176-186, http://dspace.imech.ac.cn/handle/311007/78468.[59] Xingjie Liang. hermo-responsive triple-function nanotransporter for efficient chemo-1 photothermal therapy of multidrug-resistant bacterial infection. Nature Communications. 2019, [60] Huo, Shuaidong, Gong, Ningqiang, Jiang, Ying, Chen, Fei, Guo, Hongbo, Gan, Yaling, Wang, Zhisen, Herrmann, Andreas, Liang, XingJie. Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. SCIENCE ADVANCES[J]. 2019, 5(10):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000491132700018.[61] Jinjin Wang, Yongchao Wang, Ruifang Wang, Shouwen Zhang, Xiaoxuan Liu, XingJie Liang. Targeted nanoparticles for precise cancer therapy. 中国科学:生命科学英文版. 2019, 62(10):&nbsp1392-1395, http://lib.cqvip.com/Qikan/Article/Detail?id=7003117702.[62] Wang, Jinjin, Wang, Yongchao, Wang, Ruifang, Zhang, Shouwen, Liu, Xiaoxuan, Liang, XingJie. Targeted nanoparticles for precise cancer therapy. SCIENCE CHINA-LIFE SCIENCES. 2019, 62(10):&nbsp1392-1395, http://lib.cqvip.com/Qikan/Article/Detail?id=7003117702.[63] Zhang, Yumin, Huang, Fan, Ren, Chunhua, Liu, Jinjian, Yang, Lijun, Chen, Shizhu, Chang, Jinglin, Yang, Cuihong, Wang, Weiwei, Zhang, Chuangnian, Liu, Qiang, Liang, XingJie, Liu, Jianfeng. Enhanced Radiosensitization by Gold Nanoparticles with Acid-Triggered Aggregation in Cancer Radiotherapy. ADVANCED SCIENCE[J]. 2019, 6(8):&nbsp[64] Guangchao Qing, Xianxian Zhao, Ningqiang Gong, Jing Chen, Xianlei Li, Yaling Gan, Yongchao Wang, Zhen Zhang, Yuxuan Zhang, Weisheng Guo, Yang Luo, XingJie Liang. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nature Communications[J]. 2019, 10(1):&nbsp1-12, https://doaj.org/article/e07913e02ed249c4b04fd42124a95546.[65] Liu, Lu, Guo, Weisheng, Liang, XingJie. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. BIOTECHNOLOGY JOURNALnull. 2019, 14(1):&nbsp[66] Xingjie Liang. Carbon dot-supported atomically-dispersed gold (CAT-g) as a mitochondrial oxidative stress amplifier for cancer treatment. Nature Nanotechnology. 2019, [67] Zhang, Tingbin, Huang, Yuanyu, Ma, Xiaowei, Guo, Weisheng, Liang, XingJie. Fluorinated nanomaterials for efficient nucleic acids delivery with medium serum. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2019, 258: [68] Wang, Shu, Liu, Xi, Chen, Shizhu, Liu, Zhirong, Zhang, Xiaodi, Liang, XingJie, Li, Linlin. Regulation of Ca2+ Signaling for Drug-Resistant Breast Cancer Therapy with Mesoporous Silica Nanocapsule Encapsulated Doxorubicin/siRNA Cocktail. ACS NANO[J]. 2019, 13(1):&nbsp274-283, https://www.webofscience.com/wos/woscc/full-record/WOS:000456749900027.[69] Liang, XingJie. Adaptive treatment tolerance attenuated by nanotechnique-assisted drug delivery. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2018, 256: [70] Wang, Yufei, Liu, Juan, Ma, Xiaowei, Liang, XingJie. Nanomaterial-assisted sensitization of oncotherapy. NANO RESEARCH[J]. 2018, 11(6):&nbsp2932-2950, http://lib.cqvip.com/Qikan/Article/Detail?id=675560617.[71] Mozhi, Anbu, Ahmad, Israr, Kaleem, Qari Muhammad, Tuguntaev, Ruslan G, Eltahan, Ahmed Shaker, Wang, Chen, Yang, Rong, Li, Chan, Liang, XingJie. Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. INTERNATIONAL JOURNAL OF PHARMACEUTICS[J]. 2018, 547(1-2):&nbsp582-592, http://dx.doi.org/10.1016/j.ijpharm.2018.05.074.[72] Jin, Yanan, Jia, Juanjuan, Li, Chan, Xue, Jianqi, Sun, Jiabei, Wang, Kaiyuan, Gan, Yaling, Xu, Jing, Shi, Yaqin, Liang, Xingjie. LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG(2000) nanoformulation: What if traditional methods are not applicable?. ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES[J]. 2018, 13(3):&nbsp289-296, http://lib.cqvip.com/Qikan/Article/Detail?id=65748067504849564851484948.[73] Huo, Shuaidong, Jiang, Ying, Jiang, Ziwen, Landis, Ryan F, Liang, XingJie, Rotello, Vincent M. Stable and oxidant responsive zwitterionic nanoclusters. NANOSCALE[J]. 2018, 10(16):&nbsp7382-7386, https://www.webofscience.com/wos/woscc/full-record/WOS:000431030000008.[74] Zhang, Tingbin, Huang, Yuanyu, Ma, Xiaowei, Gong, Ningqiang, Liu, Xiaoli, Liu, Lu, Ye, Xiaoxia, Hu, Bo, Li, Chunhui, Tian, JianHua, Magrini, Andrea, Zhang, Jinchao, Guo, Weisheng, Xing, JinFeng, Bottini, Massimo, Liang, XingJie. Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. NANO LETTERS[J]. 2018, 18(10):&nbsp6301-6311, https://www.webofscience.com/wos/woscc/full-record/WOS:000447355400026.[75] Chen, Shizhu, Liang, XingJie. Nanobiotechnology and nanomedicine: small change brings big difference. SCIENCE CHINA-LIFE SCIENCES. 2018, 61(4):&nbsp371-372, http://www.corc.org.cn/handle/1471x/2177578.[76] Ma, Xiaowei, Yang, Xiaolong, Wang, Yufei, Liu, Juan, Jin, Shubin, Li, Shuyi, Liang, XingJie. Gold nanoparticles cause size-dependent inhibition of embryonic development during murine pregnancy. NANO RESEARCH[J]. 2018, 11(6):&nbsp3419-3433, http://lib.cqvip.com/Qikan/Article/Detail?id=675560675.[77] Eltahan, Ahmed Shaker, Liu, Lu, Okeke, Chukwunweike Ikechukwu, Huang, Min, Han, Lu, Chen, Jing, Xue, Xue, Bottini, Massimo, Guo, Weisheng, Liang, XingJie. NVP-BEZ235/Chlorin-e6 co-loaded nanoparticles ablate breast cancer by biochemical and pnotodynamic synergistic effects. NANO RESEARCH[J]. 2018, 11(9):&nbsp4846-4858, https://www.webofscience.com/wos/woscc/full-record/WOS:000441237100033.[78] Yanan Jin, Juanjuan Jia, Chan Li, Jianqi Xue, Jiabei Sun, Kaiyuan Wang, Yaling Gan, Jing Xu, Yaqin Shi, Xingjie Liang. LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG2000 nanoformulation: What if traditional methods are not applicable?. 亚洲药物制剂科学(英文)[J]. 2018, 289-296, http://lib.cqvip.com/Qikan/Article/Detail?id=65748067504849564851484948.[79] Zhang, Yuxuan, Wang, Yufei, Wang, Jinjin, Liang, XingJie. Improved pharmaceutical research and development with AIE-based nanostructures. MATERIALS HORIZONSnull. 2018, 5(5):&nbsp799-812, https://www.webofscience.com/wos/woscc/full-record/WOS:000444245600002.[80] Xingjie Liang. Platinum-based nanopharmaceuticals used to overcome cisplatin resistance in vitro and in vivo. 癌症生物学与医学:英文版[J]. 2018, 5-5, http://lib.cqvip.com/Qikan/Article/Detail?id=67746779504849568349484951.[81] Li, Zhipeng, Wang, YiFeng, Zeng, Chengchu, Hu, Liming, Liang, XingJie. Ultrasensitive Tyrosinase-Activated Turn-On Near-Infrared Fluorescent Probe with a Rationally Designed Urea Bond for Selective Imaging and Photodamage to Melanoma Cells. ANALYTICAL CHEMISTRY[J]. 2018, 90(6):&nbsp3666-3669, http://www.corc.org.cn/handle/1471x/2178142.[82] Ma, Xiaowei, Zhong, Lin, Guo, Hongbo, Wang, Yifeng, Gong, Ningqiang, Wang, Yuqing, Cai, Jun, Liang, XingJie. Multiwalled Carbon Nanotubes Induced Hypotension by Regulating the Central Nervous System. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(11):&nbsphttp://www.corc.org.cn/handle/1471x/2178081.[83] Xingjie Liang. Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Multispectral Optoacoustic Tomography Imaging-Guided Cancer Therapy.. ACS Nano. 2017, [84] Tuguntaev, Ruslan G, Chen, Shizhu, Eltahan, Ahmed Shaker, Mozhi, Anbu, Jin, Shubin, Zhang, Jinchao, Li, Chan, Wang, Paul C, Liang, XingJie. P-gp Inhibition and Mitochondrial Impairment by Dual-Functional Nanostructure Based on Vitamin E Derivatives To Overcome Multidrug Resistance. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(20):&nbsp16901-16913, http://www.corc.org.cn/handle/1471x/2177391.[85] Huang, Xu, Xu, MengQi, Zhang, Wei, Ma, Sai, Guo, Weisheng, Wang, Yabin, Zhang, Yan, Gou, Tiantian, Chen, Yundai, Liang, XingJie, Cao, Feng. ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells. NANOSCALE RESEARCH LETTERS[J]. 2017, 12(1):&nbsphttp://www.corc.org.cn/handle/1471x/2177392.[86] Ahmad, Israr, Mozhi, Anbu, Yang, Lin, Han, Qiusen, Liang, Xingjie, Li, Chan, Yang, Rong, Wang, Chen. Graphene oxide-iron oxide nanocomposite as an inhibitor of A beta 42 amyloid peptide aggregation. COLLOIDS AND SURFACES B-BIOINTERFACES[J]. 2017, 159: 540-545, http://www.corc.org.cn/handle/1471x/2177817.[87] Huo, Shuaidong, Chen, Shizhu, Gong, Ningqiang, Liu, Juan, Li, Xianlei, Zhao, Yuanyuan, Liang, XingJie. Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting. BIOCONJUGATE CHEMISTRY[J]. 2017, 28(1):&nbsp239-243, http://www.corc.org.cn/handle/1471x/2177778.[88] Yao, Shengkun, Zong, Yunbing, Huang, Xu, Liu, Yang, Gong, Ningqiang, Zhang, Jianhua, Li, Ziqing, Cao, Feng, Wang, Xiangcheng, Liang, XingJie, Jiang, Huaidong. Periodic microstructures of blood capillaries revealed by synchrotron X-ray multi-resolution microscopic analysis. BIOMEDICAL OPTICS EXPRESS[J]. 2017, 8(12):&nbsp5825-5833, http://www.corc.org.cn/handle/1471x/2177802.[89] Wen, Yan, Wang, Yingze, Liu, Xiaoli, Zhang, Wei, Xiong, Xinhe, Han, Zhongxiao, Liang, Xingjie. Camptothecin-based nanodrug delivery systems. CANCER BIOLOGY & MEDICINE[J]. 2017, 14(4):&nbsp363-370, http://www.corc.org.cn/handle/1471x/2177797.[90] Sun, Wen, Li, Shuyi, Haupler, Bernhard, Liu, Juan, Jin, Shubin, Steffen, Werner, Schubert, Ulrich S, Butt, HansJugen, Liang, XingJie, Wu, Si. An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. ADVANCED MATERIALS[J]. 2017, 29(6):&nbsphttp://www.corc.org.cn/handle/1471x/2176809.[91] Wen, Yan, Wang, Yingze, Liu, Xiaoli, Zhang, Wei, Xiong, Xinhe, Han, Zhongxiao, Liang, Xingjie. Camptothecin-based nanodrug delivery systems. CANCER BIOLOGY & MEDICINE[J]. 2017, 14(4):&nbsp363-370, http://www.corc.org.cn/handle/1471x/2177797.[92] Xingjie Liang. Contrast enhancement method of TEM visualization for polymeric micelles by fluoride addition and staining.. Journal of Biomedical Nanotechnology. 2017, [93] Okeke, Chukwunweike I, Eltahan, Ahmed S, Zhang, Tingbin, Chen, Jing, Wang, Yingze, Xu, MengQi, Liu, Lu, Yang, AnQi, Guo, Weisheng, Liang, XingJie. Co-Delivery of Itraconazole and Docetaxel by Core/Shell Lipid Nanocells for Systemic Antiangiogenesis and Tumor Growth Inhibition. JOURNAL OF BIOMEDICAL NANOTECHNOLOGY[J]. 2017, 13(11):&nbsp1398-1412, http://www.corc.org.cn/handle/1471x/2177903.[94] Xue, Xiangdong, Jin, Shubin, Li, Zhipeng, Zhang, Chunqiu, Guo, Weisheng, Hu, Liming, Wang, Paul C, Zhang, Jinchao, Liang, XingJie. Through-Bond Energy Transfer Cassette with Dual-Stokes Shifts for "Double Checked" Cell Imaging. ADVANCED SCIENCE[J]. 2017, 4(12):&nbsphttp://www.corc.org.cn/handle/1471x/2178259.[95] Weng, YuHua, Che, Jing, Ma, XiaoWei, Guo, HongBo, Xue, XiangDong, Chen, ShiZhu, Zhang, Xu, Zhang, TingBin, Li, Chan, Xu, Jing, Gan, YaLing, Hu, ZhongBo, Liang, XingJie. Contrast Enhancement Method of Transmission Electron Microscopy in Visualization of Polymeric Micelles by Fluoride Addition and Staining. JOURNAL OF BIOMEDICAL NANOTECHNOLOGY[J]. 2017, 13(5):&nbsp534-543, http://www.corc.org.cn/handle/1471x/2177331.[96] Wen, Yan, Zhang, Wei, Gong, Ningqiang, Wang, YiFeng, Guo, HongBo, Guo, Weisheng, Wang, Paul C, Liang, XingJie. Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. NANOSCALE[J]. 2017, 9(38):&nbsp14347-14356, http://www.corc.org.cn/handle/1471x/2177785.[97] Mozhi, Anbu, Ahmad, Israr, Okeke, Chukwunweike Ikechukwu, Li, Chan, Liang, XingJie. pH-sensitive polymeric micelles for the Co-delivery of proapoptotic peptide and anticancer drug for synergistic cancer therapy. RSC ADVANCES[J]. 2017, 7(21):&nbsp12886-12896, https://www.webofscience.com/wos/woscc/full-record/WOS:000395934500055.[98] Xingjie Liang. Ultra-Small Gold Nanoparticles Behavior in Vivo Modulated by Surface PEG Grafting.. Bioconjugate Chemistry. 2017, [99] Zhao, Yuanyuan, Zhang, Xu, Li, Zhipeng, Huo, Shuaidong, Zhang, Ke, Gao, Juntao, Wang, Hao, Liang, XingJie. Spatiotemporally Controllable Peptide-Based Nanoassembly in Single Living Cells for a Biological Self-Portrait. ADVANCED MATERIALS[J]. 2017, 29(32):&nbsphttp://dx.doi.org/10.1002/adma.201601128.[100] Wang, Qian, Li, Chan, Ren, Tianyang, Chen, Shizhu, Ye, Xiaoxia, Guo, Hongbo, He, Haibing, Zhang, Yu, Yin, Tian, Liang, XingJie, Tang, Xing. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency. MOLECULAR PHARMACEUTICS[J]. 2017, 14(10):&nbsp3598-3608, http://dx.doi.org/10.1021/acs.molpharmaceut.7b00612.[101] Zhang, Shaobo, Guo, Weisheng, Wei, Jie, Li, Chan, Liang, XingJie, Yin, Meizhen. Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. ACS NANO[J]. 2017, 11(4):&nbsp3797-3805, http://www.corc.org.cn/handle/1471x/2177234.[102] Li, Shuyi, Li, Chan, Jin, Shubin, Liu, Juan, Xue, Xiangdong, Eltahan, Ahmed Shaker, Sun, Jiadong, Tan, Jingjie, Dong, Jinchen, Liang, XingJie. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. BIOMATERIALS[J]. 2017, 144: 119-129, http://www.corc.org.cn/handle/1471x/2177112.[103] Xingjie Liang. Virus-Inspired Self-Assembly Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery.. ACS Applied Materials & Interfaces. 2017, [104] Xingjie Liang. pH-Sensitive Polymeric Micelles for Co-delivery of Proapoptotic Peptide and Anticancer Drug for Synergistic Cancer Therapy.. RSC Advances. 2017, [105] Zhang, Tingbin, Guo, Weisheng, Zhang, Chunqiu, Yu, Jing, Xu, Jing, Li, Shuyi, Tian, JianHua, Wang, Paul C, Xing, JinFeng, Liang, XingJie. Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(19):&nbsp16006-16014, https://www.webofscience.com/wos/woscc/full-record/WOS:000401782500011.[106] Zhao, Caiyan, Deng, Hongzhang, Xu, Jing, Li, Shuyi, Zhong, Lin, Shao, Leihou, Wu, Yan, Liang, Xingjie. "Sheddable" PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake. NANOSCALE[J]. 2016, 8(20):&nbsp10832-10842, https://www.webofscience.com/wos/woscc/full-record/WOS:000377140700040.[107] Liu, Juan, Wei, Tuo, Zhao, Jing, Huang, Yuanyu, Deng, Hua, Kumar, Anil, Wang, Chenxuan, Liang, Zicai, Ma, Xiaowei, Liang, XingJie. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. BIOMATERIALS[J]. 2016, 91: 44-56, http://dx.doi.org/10.1016/j.biomaterials.2016.03.013.[108] Chen, Shizhu, Yang, Keni, Tuguntaev, Ruslan G, Mozhi, Anbu, Zhang, Jinchao, Wang, Paul C, Liang, XingJie. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINEnull. 2016, 12(2):&nbsp269-286, http://dx.doi.org/10.1016/j.nano.2015.10.020.[109] Liu, Juan, Ma, Xiaowei, Jin, Shubin, Xue, Xiangdong, Zhang, Chunqiu, Wei, Tuo, Guo, Weisheng, Liang, XingJie. Zinc Oxide Nanoparticles as Adjuvant To Facilitate Doxorubicin Intracellular Accumulation and Visualize pH-Responsive Release for Overcoming Drug Resistance. MOLECULAR PHARMACEUTICS[J]. 2016, 13(5):&nbsp1723-1730, https://www.webofscience.com/wos/woscc/full-record/WOS:000375519600028.[110] Xingjie Liang. Aggregation-Induced Emission: light up cells, revealing life!. Small. 2016, [111] Xingjie Liang. Self-Assembled DNA Nanostructure for Targeted and pH-Triggered Drug Delivery to Combat Doxorubicin Resistance.. Journal of Materials Chemistry B. 2016, [112] Zhang, Wei, Shen, Jianliang, Su, Hua, Mu, Ge, Sun, JingHua, Tan, CaiPing, Liang, XingJie, Ji, LiangNian, Mao, ZongWan. Co-Delivery of Cisplatin Prodrug and Chlorin e6 by Mesoporous Silica Nanoparticles for Chemo-Photodynamic Combination Therapy to Combat Drug Resistance. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(21):&nbsp13332-13340, https://www.webofscience.com/wos/woscc/full-record/WOS:000377150400017.[113] Xingjie Liang. Aggregated single - walled carbon nanotubes attenuate the behavioral and neurochemical effects of methamphetamine in mice. Nature Nanotechnology. 2016, [114] Xingjie Liang. Development and Validation of a Method for Determination of Encapsulation Efficiency of CPT-11/DSPE-mPEG2000 Nanoparticles.. Medicinal Chemistry. 2016, [115] Wang, YiFeng, Zhang, Tingbin, Liang, XingJie. Aggregation-Induced Emission: Lighting up Cells, Revealing Life!. SMALL[J]. 2016, 12(47):&nbsp6451-6477, http://www.corc.org.cn/handle/1471x/2176840.[116] Yao, Yingyi, Guo, Weisheng, Zhang, Jian, Wu, Yudong, Fu, Weihua, Liu, Tingting, Wu, Xiaoli, Wang, Hanjie, Gong, Xiaoqun, Liang, Xingjie, Chang, Jin. Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(35):&nbsp22963-22970, http://www.corc.org.cn/handle/1471x/2176586.[117] Ying Jiang, Shuaidong Huo, Joseph Hardie, XingJie Liang, Vincent M Rotello. Progress and perspective of inorganic nanoparticles based siRNA delivery system. Expert opinion on drug delivery. 2016, 13(4):&nbsp547-559, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914043/.[118] Xingjie Liang. Subcellular Behaviours Evaluation of Nanopharmaceuticals with Aggregation-Induced Emission Molecules.. Journal of Materials Chemistry C. 2016, [119] Xingjie Liang. One-step Gene Delivery into Cytoplasm in a Fusion-Dependent Manner Based on a New Membrane Fusogenic Lipid.. Chemical Communications. 2016, [120] Xingjie Liang. A Tyrosinase-triggered Oxidative Reaction-Based "Turn-on" Fluorescent Probe for Imaging in Living Melanoma cells.. Sensors and Actuators B: Chemical. 2016, [121] Zhao, Jing, Liu, Juan, Wei, Tuo, Ma, Xiaowei, Cheng, Qiang, Huo, Shuaidong, Zhang, Chunqiu, Zhang, Yanan, Duan, Xianglin, Liang, XingJie. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. NANOSCALE[J]. 2016, 8(9):&nbsp5126-5138, http://www.corc.org.cn/handle/1471x/2176548.[122] Huo, Shuaidong, Jiang, Ying, Gupta, Akash, Jiang, Ziwen, Landis, Ryan F, Hou, Singyuk, Liang, XingJie, Rotello, Vincent M. Fully zwitterionic Nanoparticle Antimicrobial Agents through Tuning of Core Size and Ligand Structure. ACS NANO[J]. 2016, 10(9):&nbsp8732-8737, http://www.corc.org.cn/handle/1471x/2176651.[123] Zhuang, Xiaoxi, Ma, Xiaowei, Xue, Xiangdong, Jiang, Qiao, Song, Linlin, Dai, Luru, Zhang, Chunqiu, Jin, Shubin, Yang, Keni, Ding, Baoquan, Wang, Paul C, Liang, XingJie. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. ACS NANO[J]. 2016, 10(3):&nbsp3486-3495, http://www.corc.org.cn/handle/1471x/2176516.[124] Lv, Guoxian, Guo, Weisheng, Zhang, Wei, Zhang, Tingbin, Li, Shuyi, Chen, Shizhu, Eltahan, Ahmed Shaker, Wang, Dongliang, Wang, Yuqing, Zhang, Jinchao, Wang, Paul C, Chang, Jin, Liang, XingJie. Near-Infrared Emission CuInS/ZnS Quantum Dots: All-in-One Theranostic Nanomedicines with Intrinsic Fluorescence/Photoacoustic Imaging for Tumor Phototherapy. ACS NANO[J]. 2016, 10(10):&nbsp9637-9645, http://www.corc.org.cn/handle/1471x/2176647.[125] He, Dongxuan, Zhang, Wei, Deng, Hongzhang, Huo, Shuaidong, Wang, YiFeng, Gong, Ningqiang, Deng, Liandong, Liang, XingJie, Dong, Anjie. Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation. CHEMICAL COMMUNICATIONS[J]. 2016, 52(98):&nbsp14145-14148, http://www.corc.org.cn/handle/1471x/2176612.[126] Xingjie Liang. Near-Infrared Absorbing Conjugated Polymer Dots as Highly-Effective Photothermal Materials for In Vivo Cancer Therapy.. Chemistry of Materials. 2016, [127] Xingjie Liang. Self-Assembling Nanowires of an Amphiphilic Camptothecin Prodrug Deriving from Homologous Derivatives Conjugation.. Chemical Communication. 2016, [128] Ma, Xiaowei, Gong, Ningqiang, Zhong, Lin, Sun, Jiadong, Liang, XingJie. Future of nanotherapeutics: Targeting the cellular sub-organelles. BIOMATERIALSnull. 2016, 97: 10-21, http://dx.doi.org/10.1016/j.biomaterials.2016.04.026.[129] Xingjie Liang. Anticancer drug nanomicells formed by self-assembling amphiphilic dendrimers to combat cancer drug resistence. Proc Natl Acad Sci U S A. 2015, [130] Xingjie Liang. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxylapatite.. ACS Nano. 2015, [131] Xingjie Liang. n vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. 2015, [132] Liu, Ya, Zhang, Di, Qiao, ZengYing, Qi, GuoBin, Liang, XingJie, Chen, XiGuang, Wang, Hao. A Peptide-Network Weaved Nanoplatform with Tumor Microenvironment Responsiveness and Deep Tissue Penetration Capability for Cancer Therapy. ADVANCED MATERIALS[J]. 2015, 27(34):&nbsp5034-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000360981800013.[133] Li, Hui, Lee, Taek, Dziubla, Thomas, Pi, Fengmei, Guo, Sijin, Xu, Jing, Li, Chan, Haque, Farzin, Liang, XingJie, Guo, Peixuan. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY[J]. 2015, 10(5):&nbsp631-655, http://www.corc.org.cn/handle/1471x/2176424.[134] Xue, Xue, Wang, LiRong, Sato, Yutaka, Jiang, Ying, Berg, Martin, Yang, DunSheng, Nixon, Ralph A, Liang, XingJie. Single-Walled Carbon Nanotubes Alleviate Autophagic/Lysosomal Defects in Primary Glia from a Mouse Model of Alzheimer's Disease. NANO LETTERS[J]. 2014, 14(9):&nbsp5110-5117, https://www.webofscience.com/wos/woscc/full-record/WOS:000341544500029.[135] Xue, Xiangdong, Zhao, Yuanyuan, Dai, Luru, Zhang, Xu, Hao, Xiaohong, Zhang, Chunqiu, Huo, Shuaidong, Liu, Juan, Liu, Chang, Kumar, Anil, Chen, WeiQiang, Zou, Guozhang, Liang, XingJie. Spatiotemporal Drug Release Visualized through a Drug Delivery System with Tunable Aggregation-Induced Emission. ADVANCED MATERIALS[J]. 2014, 26(5):&nbsp712-717, https://www.webofscience.com/wos/woscc/full-record/WOS:000336043500005.[136] An, FeiFei, Cao, Weipeng, Liang, XingJie. Nanostructural Systems Developed with Positive Charge Generation to Drug Delivery. ADVANCED HEALTHCARE MATERIALS[J]. 2014, 3(8):&nbsp1162-1181, https://www.webofscience.com/wos/woscc/full-record/WOS:000340550500004.[137] Liang, XingJie. Nanotechnology and cancer nanomedicine. BIOTECHNOLOGY ADVANCESnull. 2014, 32(4):&nbsp665-665, http://dx.doi.org/10.1016/j.biotechadv.2014.05.001.[138] Huo, Shuaidong, Jin, Shubin, Ma, Xiaowei, Xue, Xiangdong, Yang, Keni, Kumar, Anil, Wang, Paul C, Zhang, Jinchao, Hu, Zhongbo, Liang, XingJie. Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry. ACS NANO[J]. 2014, 8(6):&nbsp5852-5862, https://www.webofscience.com/wos/woscc/full-record/WOS:000338089200049.[139] CarolinaCarrilloCarrin1. Metal ions in the context of nanoparticles toward biological applications. Elsevier. 2014, http://oa.las.ac.cn/oainone/service/browseall/read1?ptype=JA&workid=JA201904045071223ZK.[140] Haque, Farzin, Li, Jinghong, Wu, HaiChen, Liang, XingJie, Guo, Peixuan. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. NANO TODAY[J]. 2013, 8(1):&nbsp56-74, http://dx.doi.org/10.1016/j.nantod.2012.12.008.[141] Sun, Yun, Cao, Weipeng, Li, Shengliang, Jin, Shubin, Hu, Kelei, Hu, Liming, Huang, Yuanyu, Gao, Xueyun, Wu, Yan, Liang, XingJie. Ultrabright and Multicolorful Fluorescence of Amphiphilic Polyethyleneimine Polymer Dots for Efficiently Combined Imaging and Therapy. SCIENTIFIC REPORTS[J]. 2013, 3: http://dx.doi.org/10.1038/srep03036.[142] Xingjie Liang. The challenge to relate physico-chemical properties of colloidal nanoparticles to their cytotoxicity. Accounts of Chemical Research.. 2013, [143] Kumar, Anil, Zhang, Xu, Liang, XingJie. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. BIOTECHNOLOGY ADVANCESnull. 2013, 31(5):&nbsp593-606, http://dx.doi.org/10.1016/j.biotechadv.2012.10.002.[144] Wei, Tuo, Liu, Juan, Ma, Huili, Cheng, Qiang, Huang, Yuanyu, Zhao, Jing, Huo, Shuaidong, Xue, Xiangdong, Liang, Zicai, Liang, XingJie. Functionalized Nanoscale Micelles Improve Drug Delivery for Cancer Therapy in Vitro and in Vivo. NANO LETTERS[J]. 2013, 13(6):&nbsp2528-2534, https://www.webofscience.com/wos/woscc/full-record/WOS:000320485100034.[145] Xingjie Liang. Superior penetration and retention behavior of 50nm gold nanoparticles in tumor. Cancer Research. 2013, [146] Xue, Xue, Hall, Matthew D, Zhang, Qiang, Wang, Paul C, Gottesman, Michael M, Liang, XingJie. Nanoscale Drug Delivery Platforms Overcome Platinum-Based Resistance in Cancer Cells Due to Abnormal Membrane Protein Trafficking. ACS NANOnull. 2013, 7(12):&nbsp10452-10464, https://www.webofscience.com/wos/woscc/full-record/WOS:000329137100004.[147] Huang, Keyang, Ma, Huili, Liu, Juan, Huo, Shuaidong, Kumar, Anil, Wei, Tuo, Zhang, Xu, Jin, Shubin, Gan, Yaling, Wang, Paul C, He, Shengtai, Zhang, Xiaoning, Liang, XingJie. Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in Vivo. ACS NANO[J]. 2012, 6(5):&nbsp4483-4493, https://www.webofscience.com/wos/woscc/full-record/WOS:000304231700093.[148] 赵宇亮. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Molecular pharmaceutics[J]. 2012, 9(3):&nbsp634-644, [149] 赵宇亮. Theranostic nanoparticles engineered for clinic and pharmaceutics. Accounts of chemical research[J]. 2011, 44(10):&nbsp1114-1122, http://www.corc.org.cn/handle/1471x/2176186.[150] 赵宇亮. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS nano[J]. 2011, 5(11):&nbsp8629-8639, http://www.corc.org.cn/handle/1471x/2176133.[151] 赵宇亮. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences. 2010, 107(16):&nbsp7449-7454, [152] 黄有国, 梁兴杰. 肺腺癌A549细胞膜上磷脂翻转酶的存在与顺铂耐药性. 自然科学进展:国家重点实验室通讯[J]. 2001, 11(2):&nbsp194-, http://lib.cqvip.com/Qikan/Article/Detail?id=4897101.[153] 梁兴杰, 黄有国. 膜脂物理状态的变化与肺腺癌细胞A549的顺铂耐药性. 中国科学:C辑[J]. 2000, 30(6):&nbsp607-, http://lib.cqvip.com/Qikan/Article/Detail?id=4799751.[154] 李玉梅, 黄振华, 路艳蒙, 梁兴杰, 黄有国. 肺腺癌A549/DDP细胞周期变化及其多药耐药性. 生物化学与生物物理进展[J]. 2000, 27(6):&nbsp616-, http://lib.cqvip.com/Qikan/Article/Detail?id=4739990.[155] Zhang Chunqiu, Jin Shubin, Xue Xiangdong, Zhang Tingbin, Jiang Yonggang, Wang Paul C., Liang Xing-Jie. Tunable self-assembly of Irinotecan-fatty acid prodrugs with increased cytotoxicity to cancer cells †. Journal of materials chemistry. B, Materials for biology and medicine. 4(19):&nbsp3286-3291, http://www.corc.org.cn/handle/1471x/2177776.
指导学生
现指导学生张旭 博士研究生 070304-物理化学 薛雪 博士研究生 070304-物理化学 马晓溦 博士研究生 070304-物理化学 陈飞 硕士研究生 085238-生物工程 薛向东 博士研究生 070304-物理化学 魏妥 博士研究生 070304-物理化学 庄小溪 硕士研究生 071011-生物物理学 霍帅东 博士研究生 0703J1-纳米科学与技术 柳娟 博士研究生 070304-物理化学 金叔宾 博士研究生 0703J1-纳米科学与技术
外国留学生
Anil Kumar
2013 中国科学院大学,网络信息中心.